	x	У	Ζ	U_{11}
N(1)	-1354 (28)	3970 (8)	2642 (10)	29 (4)
N(2)	- 3448 (32)	5032 (10)	1655 (12)	44 (Š
C(1)	- 1467 (42)	3431 (14)	1880 (15)	46 (6)
C(2)	17 (51)	2689 (15)	2275 (18)	63 (7)
C(3)	-120 (54)	3801 (16)	1178 (19)	75 (9)
C(4)	- 3789 (52)	3196 (16)	1516 (18)	68 (8)
C(5)	-4500 (40)	5812 (12)	1532 (14)	39 (5)
C(6)	- 4410 (50)	6272 (14)	2382 (18)	62 (7)
C(7)	- 6868 (57)	5660 (18)	1125 (20)	77 (9)
C(8)	- 3323 (62)	6172 (17)	845 (22)	81 (9)
C(9)	1316 (50)	4041 (15)	5312 (18)	61 (7)
C(10)	2615 (56)	3486 (19)	5064 (19)	77 (8)

Table 1 (cont.)

Table 2. Bond angles with e.s.d.'s

N(1)-S(1)-N(2)	113 (1)°
S(1) - N(1) - C(1)	125 (1)
S(1) - N(1) - Pt(1)	107 (1)
C(1)-N(1)-Pt(1)	127 (1)
S(1) - N(2) - C(5)	118 (1)
N(1)-C(1)-C(2)	104 (2)
N(1)-C(1)-C(3)	107 (2)
N(1)-C(1)-C(4)	113 (2)
C(2)-C(1)-C(3)	104 (2)
C(2)-C(1)-C(4)	112 (2)
C(3)-C(1)-C(4)	115 (2)
N(2)-C(5)-C(6)	114 (2)
N(2)-C(5)-C(7)	106 (2)
N(2)-C(5)-C(8)	102 (2)
C(6) - C(5) - C(7)	110 (2)
C(6) - C(5) - C(8)	114 (2)
C(7) - C(5) - C(8)	109 (2)

sulphurdiimine group is N-bonded to the metal and situated opposite to the ethylene molecule. The

ethylene bond is perpendicular $(86)^{\circ}$ to the coordination plane of the platinum atom, the sulphurdiimine molecule makes an angle of 71° with this plane.

The sulphurdiimine group provides two independent measure values for the length of the rare double bond between sulphur and nitrogen. This bond was estimated to be 1.54 Å (Goehring, 1956) and up till now only two determinations of 1.53 and 1.54 Å (Webb & Gloss, 1967; Neidle & Rogers, 1970) were known. Our average S-N-length of 1.55 (2) is in agreement with these values. For comparison the single bond S-N has a length of 1.63 (1) Å.

The di-t-butyl-sulphurdiimine molecule is in the *cis-trans* conformation. C(6) of the t-butyl group C(5)C(6)C(7)C(8) eclipses the double bond S(1)-N(2). In the other t-butyl group C(2) eclipses the ligand bond Pt(1)-N(1).

Thanks are due to Mr D. Heijdenrijk for making the X-ray measurements and to Mr J. Kuyper for providing the crystals.

References

GOEHRING, M. (1965). Quart. Rev. 10, 437-450.

- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KUYPER, J., VRIEZE, K. & OSKAM, A. (1972). J. Organometal. Chem. 46, C25-C28.
- NEIDLE, S. & ROGERS, D. (1970). J. Chem. Soc. (B), pp. 694–699.
- WEBB, N. C. & GLOSS, R. A. (1967). Tetrahedron Lett. pp. 1043-1046.

SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1973). B29, 914

The unit cell of a mixed crystal of guanine and 8-azaguanine. By JOHN J. MADDEN,* Crystallography Department, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S.A.

(Received 29 February 1972; accepted 4 December 1972)

Guanine ($C_{s}H_{s}N_{s}O$), 8-azaguanine ($C_{4}H_{4}N_{6}O$), and water co-crystallize in the space group $P_{2_{1}}/c$, with a=3.56 (3), b=11.37 (11), c=16.32 (16) Å, $\beta=95.33$ (9)°, and Z=4, a form isomorphous with the published structure of 8-azaguanine monohydrate.

A mixed crystal of guanine and 8-azaguanine was prepared by slowly cooling a warm equimolar solution of these compounds in 1M acetic acid. These crystals are isomorphous

with the published structure of 8-azaguanine (Macintyre, Singh & Werkema, 1965; Sletten, Sletten & Jensen, 1968) as judged by a comparison of the cell parameters for these compounds (Table 1) and the structure factor amplitudes of reflections on two zero-layer precession projectors (a^*b^* and a^*c^*). The intensities for these reflections were visually estimated as absent, weak, medium, and strong and struc-

^{*} Present address: Biological Sciences, University of Texas at Dallas, 2400 N. Armstrong Parkway, Richardson, Texas 75080, U.S.A.

ture-factor amplitudes calculated. The independent reflections thus calculated yielded R=17% when compared with those for 8-azaguanine $(R=\sum||F_A|-|F_M||/\sum|F_A|\times 100)$, where F_A = structure-factor amplitudes for 8-azaguanine [Sletten *et al.*, 1968], and F_M = structure-factor amplitudes for the mixed crystals).

 Table 1. Unit-cell parameters for 8-azaguanine (Sletten et al., 1968), guanine (Thewalt et al., 1971) and for the mixed crystal

	Mixed crystal	8-Azaguanine	Guanine
a	3·57 (3) Å	3·5629 (5) Å	3·645 (5) Å
b	11.37 (11)	11.4404 (9)	11.277 (8)
С	16.32 (16)	16.4685 (16)	16.510 (8)
β	95·33 (9)°	95·13 (1)°	96·8 (1)°
Space group	$P2_1/c$	$P2_1/c$	$P2_1/n$
Ζ	4	4	4
D_x	~1.68 g cm ⁻³	1.691 g cm ⁻³	1.67 g cm ⁻³
D_m	1.65	1.687 (8)	_

The presence of both guanine and 8-azaguanine in these crystals was confirmed by dissolving exhaustively washed crystals and separating the compounds by column chromatography on Sephadex G-10 (Sweetman & Nyhan, 1968). Optical density measurements on the separated components indicated a two-to-one ratio, azaguanine to guanine, of the compounds in the mixed crystals.

A comparison of the crystal structures of 8-azaguanine monohydrate and of guanine monohydrate (Thewalt, Bugg & Marsh, 1971) has shown that guanine can substitute in the azaguanine lattice by a single change in the hydrogenbonding scheme at C(8) [N(8) for 8-azaguanine], as noted by Thewalt *et al.*, 1971. Such a change can occur by adjusting the position of the water molecule in the asymmetric unit, and this is presumably the mechanism for the formation of the mixed crystal. I therefore propose that in the mixed crystal, molecules of guanine and 8-azaguanine occupy isomorphous positions, and that the difference between an asymmetric unit containing guanine and one containing 8-azaguanine lies in the position of the water molecule in the asymmetric unit and in the hydrogen-bonding scheme between position 8 of the base and the water molecule. No further work on the three-dimensional, X-ray analysis of the structure is contemplated.

I thank Dr G. A. Jeffrey for the use of the facilities of the Pittsburgh Crystallography Department and the U.S. Public Health Service, N.I.H. Training Grant No. GM-012728 for financial support.

References

- MACINTYRE, W. M., SINGH. P. & WERKEMA, M.S. (1965). Biophys. J. 5, 697-713.
- SLETTEN, J., SLETTEN, E., & JENSEN, L. H. (1968). Acta Cryst. B24, 1692–1698.
- SWEETMAN, L. & NYHAN, W. L. (1968). J. Chromatogr. 32, 662–675.
- THEWALT, U., BUGG, C.E., & MARSH, R.E. (1971). Acta Cryst. B27, 2358-2363,

Acta Cryst. (1973). B29, 915

The N-S bond lengths in the isomers $S_6(NH)_2$. Refinement of the crystal structure of $S_6(NH)_2$ -II. By H. J.

POSTMA, F. VAN BOLHUIS and AAFJE VOS, Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Zernikelaan, Paddepoel, Groningen, The Netherlands

(Received 18 January 1973; accepted 19 January 1973)

Refinement of the crystal structure of $S_6(NH)_2$ -II has shown that the average length of the N-S bonds in $S_6(NH)_2$ -II, 1.680 Å, is approximately equal to the length found in $S_6(NH)_2$ -III, 1.672 Å, but smaller than the value observed in $S_6(NH)_2$ -II, 1.724 Å. As suggested in an earlier paper the large value observed for the latter compound may be due to disorder.

In a previous paper (Postma, van Bolhuis & Vos, 1971; hereafter referred to as PBV) the average elongation of 0.052 Å of the N-S bonds in $S_6(NH)_2$ -I relative to those in $S_6(NH)_2$ -III has tentatively been ascribed to disorder in $S_6(NH)_2$ -I. The N-S values in $S_6(NH)_2$ -II determined by Weiss (1960) were not sufficiently accurate to be compared

Table 1.	Crystallographic	data and	experimental	details
14010 11	Crystanographic	uuru unu	caperimental	ucruns

Data	Method
Space group Pnma, $Z=4$	Weissenberg photographs.
a = 7.873 (1) Å	Weissenberg photographs of zero-layer lines;
b = 12.858 (2)	$\lambda(Cu K\alpha) = 1.5418, \ \lambda(Cu K\alpha_1) = 1.54051,$
c = 7.390(1)	$\lambda(Cu K\alpha_2) = 1.54433$ Å. Calibration with NaCl
	reflexion spots. Least-squares adjustment of
	17 0kl and 22 hk0 reflexions.
Crystal size	$0.46 \times 0.44 \times 0.55$ mm.
1682* reliable intensities hkl	Computer automated Nonius four-circle dif-
	fractometer, Mo-radiation, Zr-filtered, θ -2 θ scan,
	$\sin \theta / \lambda \le 0.995 \text{ Å}^{-1}.$
1682 reliable $F(hkl)$ values	Correction for L.P. and for absorption
	$(\mu = 16.5 \text{ cm}^{-1})^{\dagger}$

* Not including the strong reflexion 020, which was omitted as its intensity was badly influenced by streaks. † According to the Busing & Levy (1957) scheme.